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Abstract

In this work an artificial neural network (ANN) was constructed and trained for the prediction of the soil organic carbon to

water distribution coefficients of some aliphatic and aromatic hydrocarbons and benzene derivatives based on quantitative

structure- property relationships approaches. The inputs of this network are theoretically derived descriptors, which were

chosen by the stepwise multiple linear regression (MLR) variables selection techniques. These descriptors are: R-maximal in-

dex/weighted  by  atomic  Sanderson  electronegativities,  R-maximal  autocorrelation  of  lag5/weighted  by  atomic  Sanderson

electronegativities, R-autocorrelation of lag3/weighted by atomic Sanderson electronegativities, 3D-Morse-signal 01/weight-

ed by atomic van der Waals volumes and H autocorrelation of lag3/weighted by atomic polarizabilities which encode topo-

logical and electronic aspects of molecules. The standard errors of the obtained ANN model are 0.16, 0.19 and 0.27 for train-

ing, test and prediction sets respectively. Comparison between statistical results calculated from the MLR and ANN models

reveals that all statistics have been improved considerably in the case of the ANN model. Also the results obtained in this pa-

per demonstrate that it is possible to generate robust neural network, capable in estimation of the soil organic carbon to wa-

ter distribution coefficient using theoretically calculated molecular descriptors.

Keywords: Soil-water distribution coefficient; artificial neural network; quantitative structure-property relationship; molecu-

lar descriptors; multiple linear regressions



2 Journal of Biostatistics and Biometric Applications

Annex Publishers | www.annexpublishers.com Volume 9 | Issue 1

Introduction

The term of sorption is used frequently in environmental studies to denote the uptake of a solute by a solid (soil or sediment or

component of soil) without refering to specific mechanism. Sorption play an important role in determining the environmental

fate and impact of organic chemicals. This process affects on a variety of specific fate phenomena of organic compounds like vo-

latilization [1], bioavailability [2], photolysis [3], and hydrolysis [4]. Soil organic carbon to water distribution coefficient ( koc),

quantitavely describe the extent to which an organic chemical is distributed between an environmental solid and an aqueous

phase, which is defined by the following equation5:

Where Csoil is the concentration of solute (gram of carbon per gram of soil) in the soil, and Cw denotes the concentration of so-

lute in the aqueous phase. The distribution of a molecule between soil and water was a result of competitive interactions of the

solute between these phases. Sorption occurs when the free energy of the interactions between an environmental solid and an

organic chemical sorbet is negative. Relatively weak intermolecular forces called Van der Waals interactions drive this process.

These types of interactions refers to all attractive and repulsive interactions between chemically nonbonding molecules namely;

electrostatic,  induction,  and  dispersion  interactions.  The  molecular  structure  and  chemical  properties  of  the  interested

molecule determine type and extent of these interactions and therefore affected on the value of koc.

The value of koc plays an important role in determining the pollution potential of the nonionic organic compounds such as pes-

ticides. The experimental determination of soil organic carbon to water distribution coefficient is time consuming, difficult task

and requiring a number of measured values for different types of soils over a reasonable concentration range [6-8]. Because of

experimental complications, and the needs to access these values for new synthesized materials, there is considerable interest to

use an estimation method based on surrogate solute properties that are more amenable to experimental determination [9-14].

One of the most successful approaches in the prediction of chemical properties starting only from their molecular structural in-

formations is  quantitative structure-activity/property relationships (QSAR/QSPR).  In these studies,  a  correlation between

chemical structural parameters and chosen property is defined. Such studies consist of two main stages. In the first step the

chemical compounds are translated into a computer readable form and afterwards the quantitative correlation between chemi-

cal structure and its property can be obtained using different statistical and learning procedures, like multiple linear regression

(MLR), artificial neural network (ANN) and partial least square (PLS). There are some reports about the applications of QSPR

approaches to predict the soil organic carbon distribution coefficients in some soil-solvent systems [15, 16]. For example Delga-

do, Alderete and Jana predict the soil sorption coefficients of 80 polar and nonpolar organic compounds using QSPR approach

[17]. This is a 5-parameter MLR model based on molecular descriptors. These parameters are; number of benzene rings, molec-

ular weights, number of N atoms, number of O atoms and number of S atoms. Also Liu and Yu developed a QSPR approaches

for the prediction of the soil sorption coefficient of some polar organic chemicals [18]. Since the commonly used MLR will fail

to develop an appropriate QSPR model when the nonlinear phenomenon is significant to some extent within the investigated

data; therefore nonlinear modeling techniques such as artificial neural networks were necessary for building an accurate and re-

liable QSPR model [19-21]. Todays application of artificial intelligence in modeling of environmental risk assessment of chemi-

cals is very important and necessary. Computational toxicology is a rapidly growing field that utilizes artificial intelligence and

machine learning to predict the toxicity of chemical compounds. Computational toxicology is an important tool for assessing

the risks associated with the exposure of soil, water and air to environmental contaminants. By providing insights into the be-

havior and effects of these compounds, computational models can help to inform management decisions and protect the health

of aquatic ecosystems and the humans who depend on them for food and recreation. The main aim of the present work was to

development of a QSPR model using artificial neural network for the prediction of soil organic carbon to water distribution co-

efficient of some aliphatic and aromatic hydrocarbons, heterocyclic compounds and benzene derivatives.
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Methods

Data Set

The soil  organic carbon to water  distribution coefficients  of  57 neutral  organic compounds weretaken from Ref.  [22],  which

were be used as data set. The molecules inthe dataset consist of aliphaticandaromatic hydrocarbons, heterocyclic compound-

sandbenzene derivatives (Table 1). The soil-water distribution coefficients of these compoundswere obtained in the same condi-

tions  andfalls  in  the  range of  1.3  to  4.85  for  2-methylphenol  and pyrene,  respectively.  Data  sets  were  randomly divided into

three separate sections: the training, test, and external validation sets, consisting of 37, 10, and 10 members, respectively. The

training set was used to adjust the parameters of models, the test set was used to prevent the network from overfitting, and the

external validation set was used to evaluate the prediction ability of constructed models.

Table 1: Data set and corresponding observed ANN and MLR predicted values of logKoc.

No. Name (logK
oc
)

EXP
(logK

OC
)

ANN
(logK

OC
)

MLR
E

abs
E

r

Training set

1 Benzene 1.90 1.96 2.17 0.06 0.03

2 1,3-Dimethylbenzene 2.50 2.33 2.37 -0.17 -0.07

3 1,4-Dimethylbenzene 2.72 2.41 2.57 -0.31 -0.11

4 n-Buthylbenzene 3.53 3.49 3.29 -0.04 -0.01

5 Naphtalene 2.97 3.12 3.12 0.15 0.05

6 Pyrene 4.85 4.73 5.12 -0.12 -0.02

7 Chlorobenzene 2.34 2.30 2.39 -0.04 -0.02

8 2-Methylphenol 1.30 1.42 1.31 0.12 0.09

9 1,3-Dichlorobenzene 2.48 2.68 2.30 0.20 0.08

10 Pyridine 2.48 2.34 2.30 -0.14 -0.06

11 1,2,3,4,-Tetrachlorobenzene 3.96 3.80 3.79 -0.16 -0.04

12 1,3,5-Trichlorobenzene 3.09 2.82 2.86 -0.27 -0.08

13 1,2,3,5-Tetrachlorobenzene 3.38 3.86 3.48 0.48 0.14

14 Bromobenzene 2.55 2.49 2.46 -0.06 -0.02

15 Iodobenzene 3.10 2.72 2.93 -0.38 -0.12

16 Dichloromethane 1.56 1.59 1.51 0.03 0.02

17 Tribromomethane 2.10 2.08 1.87 -0.02 -0.01

18 4-Methylphenol 1.56 1.72 1.91 0.16 0.10

19 1,1,2,2,-Tetrachloroethane 1.92 1.89 1.68 -0.03 -0.02

20 4-Nitroaniline 1.88 2.27 2.41 0.39 0.20

21 Tetrachloroethene 2.38 2.10 2.03 -0.28 -0.12

22 Trichloroethene 2.04 1.78 1.80 -0.26 -0.13

23 Benzylalcohol 1.43 1.75 1.04 0.32 0.22

24 3-Nitroaniline 1.73 2.21 2.29 0.48 0.28
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25 Nitrobenzene 2.20 2 2.07 -0.20 -0.09

26 Anisol 1.54 1.56 1.71 0.02 0.01

27 Acetophenone 1.57 1.68 1.81 0.11 0.07

28 4-Methylaniline 1.90 1.87 1.95 -0.03 -0.02

29 Quinoline 2.84 2.86 2.83 0.02 0.01

30 Phenol 1.55 1.76 1.82 0.21 0.14

31 4-Bromophenol 2.41 1.83 2.21 -0.58 -0.24

32 2-Nitrophenol 2.01 1.65 1.54 -0.36 -0.18

33 2-Chlorophenol 1.67 1.65 2.07 -0.02 -0.01

34 1-Aminonaphtalene 3.50 3.48 3.12 -0.02 -0.01

35 2-Methoxyphenol 1.56 1.64 1.47 0.08 0.05

36 3-Methoxyphenol 1.50 1.73 1.72 0.23 0.15

37 Naphtol 3.07 2.97 2.82 -0.10 -0.03

Test set

38 Toluene 2.06 1.44 1.67 -0.62 -0.30

39 1,3,5-Trimethylbenzene 3 3.25 3.18 0.25 0.08

40 Phenanthrene 4.35 4.38 4.22 0.03 0.01

41 1,2,3-Trichlorobenzene 3.29 3.42 3.45 0.13 0.04

42 Trichloromethane 1.81 1.62 1.53 -0.19 -0.10

43 1,1,2-Trichloroethane 1.99 1.80 1.62 -0.19 -0.09

44 3-Nitrophenol 1.68 1.82 1.93 0.14 0.08

45 4-Chlorophenol 1.80 1.78 2.04 -0.02 -0.01

46 1,4-Dichlorobenzene 2.80 2.50 2.41 -0.30 -0.11

47 1,2-Dichloropropane 1.68 2.05 2.15 0.37 0.22

Prediction set

48 Ethylbenzene 2.22 1.97 2.10 -0.25 -0.11

49 1,2,3-Trimethylbenzene 3.04 2.66 2.65 -0.38 -0.13

50 Anthracene 4.38 4.53 4.23 0.15 0.03

51 1,2,4-Trichlorobenzene 3.35 3.11 2.83 -0.24 -0.07

52 Tetrachloromethane 1.53 1.86 1.67 0.33 0.22

53 1,1,1-Trichloroethane 1.82 1.56 1.42 -0.26 -0.14

54 4-Nitrophenol 1.70 1.98 2.14 0.28 0.16

55 3-Chlorophenol 1.78 1.81 1.94 0.03 0.02

56 1,2-Dichloroethane 1.62 1.78 1.74 0.16 0.10

57 1,2-Dichlorobenzene 2.50 2.44 2.71 -0.06 -0.02
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Molecular Descriptors

One important subject  in QSPR studies is  the numerical  representation of  the chemical  structure of  the interested molecule,

which often called molecular descriptors. The built model performance and the accuracy of results are strongly depends on the

way  that  the  structural  representation  was  performed.  In  this  project  the  structures  of  the  molecules  were  drawn  with  Hy-

perChem 4.0 package23and exported in a file format suitable for MOPAC program [24]. The geometry optimization was per-

formed with the semiempirical quantum method AM1 [25] using the MOPAC 6.0. All geometries had been fully optimized

without symmetry restrictions. In all cases frequency calculations have been performed in order to ensure that all the calculated

geometries correspond to true minima. Also the HyperChem output files were used by the Dragon 3.0 package [26]. Dragon is

a new, freely available software (by Milano Chemometrics and QSAR Research Group) for the calculation of more than 1000

molecular descriptors. The generated numerical descriptors were responsible for encoding important features of the structures

of molecules. Some descriptors, which generated for each compound encoded similar information about the molecule of inter-

est. Therefore, it was desirable to test each descriptor and eliminate those that show high correlation (R>0.90) with each other.

Subsequently, the method of stepwise multiple linear regression was used for the selection of important descriptors and MLR

model construction. The main goal of the generation of the MLR model was to choose a set of suitable descriptors that can be

used as inputs for generation of the ANN model. The specifications of selected MLR model is presented in Table2 and also the

correlation matrix between selected descriptors is shown in Table 3.

Table 2: Specification of multiple linear regression models*

Descriptor Notation Coefficient SE

R maximal index RT
+

(e) -2.507 0.539

R maximal autocorrelation of lag5 R
+

5
(e) -7.485 1.136

P autocorrelation of lag3 R
3
(e) -0.258 0.104

3D-Morse-signal 01 Mor01v 0.009 0.002

H autocorrelation of lag3 H
3
(P) 2.539 0.323

Constant 2.627 0.221

* SE refers to standard error of coefficients.

Table 3: Correlation matrix for descriptors applying in this work

R
3
(e) Mor01v RT

+

(e) R
+

5
(e) H

3
(P)

R
3
(e) 1

Mor01v 0.187 1

RT
+

(e) -0.324 -0.539 1

R
+

5
(e) 0.160 0.216 -0.098 1

Artificial Neural Network

An ANN is a biologically inspired computer program desired to learn from data in a manner of emulating the learning pattern

in the brain. Most ANN systems are very complex and high-dimension processing systems. Details descriptions of the theory

behind neural networks have been adequately described elsewhere [27-29]. The relevant principle of supervised learning in an

ANN  is  that  it  takes  numerical  inputs  (the  training  data)  and  transfers  them  into  desired  outputs.  The  inputs  and  outputs
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nodes may be connected to the ‘external world’ and to other nodes within the network. The way in which each node transforms

its input depends on the so-called ‘connection weights’ or ‘connection strength’ and bias of the node, which are modifiable. The

output value of each node depends on the weight strength and bias values. For the present purposes, the great power of Ann’s

stems from the fact that it is possible to train them. Continually presenting the network with known inputs and outputs and

modifying the connection weights and biases between the individual nodes do training. This process is continued until the out-

put nodes of the network match to the desired outputs in a stated degree of accuracy. In the present work an ANN program

was written in FORTRAN 77 in our laboratory. This network was feed-forward fully connected that has three layers with sig-

moid transfer function. Descriptors appearing in the MLR models were used as inputs of network and signal of the output node

represent the distribution coefficient of interested compound. Thus, this network has five nodes in input layer and one node in

output layer.  The value of each input was divided into its  maximum value to bring them into dynamic range of the sigmoid

transfer function of the network. The initial values of weights were randomly selected from a uniform distribution that ranged

between -0.3 and +0.3. The initial values of biases were set to be one. These values were optimized during the network training.

Before  training,  the  network’s  parameters  would  be  optimized.  These  parameters  are:  number  of  nodes  in  the  hidden  layer,

weights and biases learning rates,  and the momentum values. Then the optimized network was trained using training set for

the adjustment of weights and biases values. It is known that a neural network can become over-trained. An over-trained net-

work has usually learned the stimulus pattern it has seen perfectly, but cannot give an accurate prediction for unseen stimuli,

and it is no longer able to generalize. There are several methods for overcoming this problem. One method is to use a test set to

evaluate the prediction power of the network during its training. In this method after each 1000 training cycle, the network was

used to calculate the distribution coefficient of molecules included in the test set. To maintain the prediction power of the net-

work at a desirable level, training was stopped when the standard error of prediction for the test set started to increase. In order

to evaluate the performance of the ANN, standard error of calibration and standard error of prediction were used [30]. For the

evaluation of the predictive power of the networks, the trained ANN was used to calculate log koc of the molecules included in

the prediction set.

Results and Discussion

The data set and corresponding observed and predicted values of the logKoc of all molecules studied in this work are shown in

Table1. The selected MLR model is presented in Table 2. It can be seen from this table that five descriptors appeared in the

MLR model. These descriptors are: R-maximal index/weighted by atomic sanderson electronegativities (RT+(e)), R- maximal

autocorrelation of lag5/weighted by atomic sanderson electronegativities (R+
5(e)), R autocorrelation of lag3/weighted by atomic

sanderson electronegativities(R3(e)), 3D-Morse-signal 01/weighted by atomic van der Waals volumes (Mor01v) and H autocor-

relation of lag3/weighted by atomic polarizabilities (H3(P)). A detailed description of the theory of these descriptors has been de-

scribed in Ref. [31]. According to Eq.1, the value of KOC determined by the ratio of concentration of solute in soil phase to it's

concentration in aqueous phase. As mentioned in introduction section, the value of KOC affected by two compatative process;

which are sorption and solubility. Sorption process is driven by relatively weak van der Waals intermolecular interactions. The

charge distribution in a molecule can affected on molecular polarizability and hence on the van der Waals interactions and lead-

ing on the sorption process. On the other hand the molecular solubility is depends on the intermolecular forces that exist be-

tween the solute and solvent molecules. Therefore the solute-solvent interactions, such as hydrogen bonding and dipole-dipole

interactions are highly responsible in the solubility of molecules. The parameters of RT+(e), R+
5(e), R3(e) and H3(P) which ap-

peared in the model are geometry, topology and atomic weight assembly (GETAWAY) descriptors that were presented by Con-

sonni et al. [31]. They encodes geometrical information that given from influence matrix, topological information given by

molecular graph and chemical information from selected atomic properties. The Mor01v is a new type of descriptors for encod-

ing of the molecular structure and named 3D molecular representation of structure based on electron diffraction code (3D--

MORSE code) [32, 33]. They can be calculated by the summing of atomic properties viewed by different angular scattering func-
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tions which weighted by some atomic properties, like atomic number, atomic mass, partial atomic charge, atomic electronega-

tivity and atomic polarizability. The possibility for choosing an appropriate atomic property give great flexibility to these de-

scriptors for adapting them to the problem under investigations. This fact that these topological descriptors wighted by elec-

tronic properties of molecule reveals that they can also encode electronic distribution (or polarizability) of the interested

molecules which has an important role in the interactions of molecules with soil and water and therefore affected on soil-water

distribution coefficient of organic compounds. Other descriptors that appeared in model is H3(P) which, encode information

about the charge distribution in molecule. This descriptor is particularly important in modeling some solution properties of

compounds which depend on solute/solvent interactions and sometimes frequently used to represent polarizability term in lin-

ear solvation energy relationships.31 The appearance of these descriptors (RT+(e), R+
5(e), R3(e), H3(P) and Mor01v) in the model

reveals the role of electronic and charge distribution as well as size, shape and steric parameters of a molecule to it's KOC. The

correlations matrix between these descriptors are shown in Table 3. As can be seen from this table there are not significant cor-

relations between selected descriptors. The next step was to construction of the ANN model. The selected descriptors were

used as inputs for generated ANN. Before training the network, the parameters of the number of nodes in the hidden layer,

weights and biases learning rate and momentum values would be optimized. Procedures for the optimization of these parame-

ters were reported in our previous papers [34-36]. Table 4 shows the architecture and specification of the optimized network.

After optimization of the ANN parameters, the network was trained for the adjustment of weights and biases values. The ANN

calculated values of distribution coefficient for training, test, and prediction sets are shown in Table 1. To compare the applied

chemometric methods of MLR and ANN in predicting the koc values, some statistics for these models calculated and shown in

Table 5. The ANN standard error values of 0.16, 0.19 and 0.27 were obtained for the training, test and prediction sets respective-

ly, should be compared with corresponding values of 0.25, 0.34 and 0.32 for MLR model. It can be seen from these values and al-

so those shown in Table 5 that all statistics have improved considerably in the case of ANN model.

Table 4: Architecture and specification of the generated ANNs

No. of nodes in the input layer 5

No. of nodes in the hidden layer 3

No. of nodes in the output layer 1

Weights learning rate 0.2

Bias learning rate 0.3

Momentum 0.8

Transfer function Sigmoid

Table 5: Comparison of the statistical parameters obtained using the ANN and MLR models*
*F is the statistical F value, R is the correlation coefficient and SE is the standard error of model

MLR ANN

F SE R F SE R

Training 334.4 0.25 0.95 849.67 0.16 0.98

Test 52.17 0.34 0.93 184.3 0.19 0.97

Prediction 64.09 0.32 0.94 97.79 0.27 0.96

Figure 1 shows a plot of the ANN calculated versus the experimental values of log koc for data set molecules. Correlation coeffi-

cient of this plot is 0.955, for a 5-parameter ANN model. The residual of the ANN calculated values of the log koc are plotted

against their experimental values in Figure. 2. The propagation of the residuals on both sides of zero line indicates that no syste-
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matic error exists in the development of the neural network. Any residuals can be raised to some experimental uncertainty in

determination of log koc and/or existence of molecules in the out of the applicability domain of the model. The choice of an op-

timal metric space that represents bitterly the structural diversity of a compound population is determinant in the efficiency of

the model. Molecular diversity analysis explores the way of molecules to cover a determined structural space and underlies

many approaches for compound selection and design of combinatorial libraries. A correct diversity/similarity space should per-

mit us to place molecules in good position relative to others in a well-parameterized way. The measures of molecular similarity

and/or diversity involve in general three main components the descriptors, the coefficients and the weighting scheme. It is usu-

al to define a ‘‘chemistry space’’ as a space with N descriptors that define the position of a molecule in an N-dimensional chem-

istry space; the diversity or similarity of compounds is intuitively related to their inter-molecular distance as measured in that

space.

Figure 1: Plot of the ANN predicted distribution coefficients against the experimental values.

Figure 1 M.Hossein nia, M.H.Fatemi*, Prediction of the Soil-Water Distribution Coefficient from Theoretical Dervived Molecu-

lar Descriptors

Figure 2: Plot of the residual versus experimental values of distribution coefficients

Figure 2 M.Hossein nia, M.H.Fatemi*, Prediction of the Soil-Water Distribution Coefficient from Theoretical Dervived Molecu-

lar Descriptors
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Conclusion

The results of this study demonstrate that QSPR method using the artifical neural networks techniques can generate suitable

model for the prediction of soil-water distribution coefficients of aliphatic and aromatic hydrocarbons and benzene derivatives.

The key strength of the neural networks is their ability to allow for flexible mapping of the selected features by manipulating

their functional dependence implicity, unlike regression analysis. Neural network handles both linear and nonlinear relation-

ships without adding complexity to model. This capability offset the large computing time required and the complexity of the

ANN method with respect to MLR. Also descriptors that appear in the MLR models and included in ANN, provide informa-

tion related to the different molecular properties that can participate in the physicochemical process that occure in distribution

of soil organic carbon to water.
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