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Abstract

During early embryonic development in female mammals, one copy of the X chromosome is randomly inactivated in 
a process known as X chromosome inactivation. In X chromosome inactivation, approximately 70% of genes on the 
short arm and nearly all of the genes on the long arm of the designated chromosome are inactivated. RNA activation is 
known to RNAs activating gene expression; however its roles in X chromosome inactivation have not been determined. 
Here, we used bioinformatic analyses to simulate the strength of binding between RNA and human 23 chromosomes 
(X chromosome and 22 autosomes) via a metric we refer to as RNA binding strength. We found that the RNA binding 
strength of the long arm of the X chromosome was significantly weaker than that of the autosomes and the short arm of 
X chromosome. Moreover, the RNA binding strengths of inactivated regions on the X chromosome were significantly 
lower than those of regions escaping X chromosome inactivation. The top 50% RNA binding strength value of the long 
arm of the X chromosome was significantly lower than those of all autosomes. Moreover, the RNA binding strengths of the 
chromosome 19 and X chromosome centromeres, which consist of constitutive heterochromatin, were weaker than those 
of the flanking sequences. These results suggest that RNA binding strength is associated with transcription. Because RNA 
binding to DNA can activate genes, the low RNA binding strength of the human X chromosome may be one explanation 
for X chromosome inactivation. 

Keywords: X Chromosome Inactivation; Autosome; RNA Binding Strength; Centromere DNA; RNA Activation
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Introduction

During early embryonic development in female mammals, one of two copies of the X chromosome (chrX) is randomly inactivated 
in a process known as X chromosome inactivation (XCI). The pattern of XCI is retained through cell divisions and inherited by all 
daughter cells [1,2]. XCI represents a great model system with which to study a broad range of developmental and epigenetic process-
es-those involving stable gene expression without changes to the underlying DNA sequence [3-6]. Therefore, it is of great significance 
to study XCI for understanding epigenetics. In addition, dosage compensation of X-linked gene products between the sexes is crucial 
for mammalian growth and development [7-10]. In Drosophila and Caenorhabditis elegans (C. elegans), dosage compensation is ac-
complished by reducing the expression of genes located on the female chrX to half of that of those located on the male chrX [11-13]. 
Although previous studies have indicated that two X-linked genes (Xist and Tsix) [14,15] and differential DNA methylation [16] play 
important roles in XCI, a definitive mechanism of XCI remains elusive. 

In human cells, interactions between RNA and DNA can activate gene expression [17-20] in a process known as RNA activation 
[21,22]. Our previous studies showed that RNAs complementary to DNA sequences play important roles in activating genes [23,24]. 
RNA activation may also regulate gene expression by binding to DNAs to prevent chromatin over-packing [25]. Previous studies 
have reported that the strength of RNA binding to DNA (the RNA binding strength) may influence chromatin activity. For example, 
the RNA binding strength of centromere DNA, which consists of constitutive heterochromatin, from C group chromosomes was 
significantly lower than that of flanking sequences, which suggests that the centromere is not easily affected by RNAs produced from 
other transcribed regions [22].

In this study, we explored whether RNA binding strength affects XCI. For this analysis, we used bioinformatics methods to examine 
RNA binding to the chrX and to the autosomes. Based on our findings, we conclude that the low RNA binding strength of human 
chrX is associated with XCI. 

Materials and Methods

Sequence Data

Nucleotide sequences of the X chromosome and 22 autosomes were obtained from NCBI (build 33; http://www.ncbi.nlm.nih.gov/
genome/guide). A total of 1,000 genes highly expressed in tonsil germinal center B cells were selected for analysis based on the results 
of the Digital Differential Display (NCBI UniGene Lib.289 -NCI_CGAP_GCB1). Germinal center B cells were selected for this 
analysis because there are many proliferating cells in tonsil germinal center B cells, and the set of expressed genes effectively reflects 
the interactions between RNAs and chromosomal DNA. Normally, there are about 1,000 highly expressed genes in differentiated 
cells [25,26], so we selected 1,000 highly expressed genes to calculate RNA binding strengths. These 1,000 highly expressed genes are 
located on different chromosomes, including chrX and reflect the set of RNAs in the B cells (excluding tRNAs and rRNAs). RNAs 
produced from these 1,000 genes were used to simulate the interactions between RNA and each chromosome.

Software 

Gene-Analyser 2.0 software was used to analyze the number of 7-nucleotide (7-nt) strings. The software was written in-house and can 
be found at http://dx.doi.org/10.1016/j.biocel.2016.08.004 [22]. The number of 7-nt strings in each DNA fragment were calculated by 
using the method of stepping into a base. The possible combination of 7-nt strings for 4 bases is 4 7=16,384. Genomic DNA is packaged 
with nucleosomes, and the DNA strands are very long; therefore, DNAs will not form single strands, even with a negative superhelix. 
The binding between RNA and RNAs is stronger than that bewteen RNA and DNA, so RNAs preferentially form stem-loop structure 
or bind with RNAs. Therefore RNA binding to DNA occurs in short fragments of about 5 nt-9 nt in length. Because 7 nucletodies 
is the median length of RNA-DNA binding fragments, we chose 7-nt strings for our statistical analysis of RNA binding strength. 
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Although our data were designed to analyze 7-nt strings, it actually reflects strings of any length of and any complementary base 
number. If complementation exists in the long fragments, there will be an even greater number of complementary short fragments.

RNA binding strength algorithm

In this paper, to describe the possibility of all RNAs binding to DNA sequences of a certain length in cells, we developed a metric we 
call RNA binding strength. The stronger the RNA binding strength, the stronger the binding strength of all the RNAs in the cells to 
the DNA sequence, and vice versa [22]. The RNA binding strength algorithm is based on the principle that more complementarity 
between RNA and DNA results in more binding between RNAs and DNAs [22]. For example, when there is one 5’-TTTTTTT 
DNA molecule and ten 5’-AAAAAAA RNA molecules in a certain volume solution, the likelihood of DNA binding with RNAs is 
10 (10×1=10). If there are ten 5’-TTTTTTT DNA molecules, the likelihood of DNA binding with RNAs is 100 (10×10=100). The 
binding of single-strand RNA and double-strand DNA accounts for competition between RNA and DNA for binding. Although G-C 
binding is strong, G-C melting is weak, so the affinity of A-T binding is not lower than that of G-C. Therefore, we did not introduce 
a coefficient to correct for G-C binding.

In our study, DNA sequences from the indicated chromosomes were divided into 50-kb segments and recoded as the number of 
7-nt strings using all possible 7-nt strings (47=16,384). The 50 kb fragment size was chosen because a transcription unit contains 
10-50kb sequences (based on DNase I digestion of the hemoglobin and ovoalbumin genes). To determine the RNA binding strength 
of a given 7-nt string, we first multiplied the number of times each 7-nt string appears in RNA and DNA fragments. One-thousand 
genes highly expressed in human tonsil germinal center B cells were selected (as described above), and the 7-nt string numbers for 
these genes were calculated from the sense strand (including introns and exons). The 7-nt string numbers for each gene multiply by 
the expression frequency of the gene (Lib.5601; http://www.ncbi.nlm.nih.gov/UniGene/), which results in the calculated numbers 
of the 7-nt string for the gene. Table 1 illustrates the calculation of RNA binding strengths in a 50-kb DNA fragment. The sum of 
the numbers for the 7-nt strings of 1,000 genes was regarded as the simulated total RNAs (total RNAs) in cells (Table 1, C column). 
The simulated RNA binding strength (Table 1, E column and E16385) was defined as the sum of the products of the RNAs and the 
corresponding 7-nt strings numbers within each 50-kb fragment. Therefore, RNA binding strength represents a measure of the 
amount of RNA that can bind to each 50-kb region. 

A

Number

B

7nt strings*

C

Total RNAs**

D

The amount of 7-nt string 
in the 50 kb DNA fragment 
#

E

RNA binding 
strengths ##

1 AAAAAAA 2191.14455 78 170909.2749
2 AAAAAAC 197.00345 7 1379.02415
3 AAAAAAG 318.66205 12 3823.9446
. . . . .
. . . . .
. . . . .
16384 TTTTTTT 3324.5065 203 674874.8195
16385 6230540.035###

*: All possible 7-nt strings (the number of possible 7-nt strings for 4 bases is 47=16,384) (B1: B16384). **: The number of 7-nt strings for 
1,000 highly expressed genes was calculated. Because the expression frequency of each gene is different, the number of 7-nt strings of each 
gene must be multiplied by the expression frequency of the gene. The sum of each 7-nt string of the one-thousand highly expressed genes 
is the number of each 7-nt string; C1:C16384 are the total RNAs. #: The number of each 7-nt string in a 50kb DNA fragment (D1:D16384). 
##: The product of the number of each 7-nt string in the total RNAs and DNA fragment is the RNA binding strength of this 7-nt string. 
For example, E1=C1×D1, E2= C2×D2, etc. ###: E16385 is the sum of RNA binding strengths of all 7-nt strings (ΣE1:E16384), i.e. the RNA 
binding strength of the 50-kb DNA fragment.

Table 1: The calculation method of RNA binding strengths in a 50 kb DNA fragment
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The RNA binding strength value of each 50-kb DNA fragment is regarded as a sample. T-tests were calculated using MS Excel and 
used to compare the mean of RNA binding strength values of all 50 kb fragments across different chromosomes. RNA binding 
strengths of different 50-kb fragments on the autosomes and the Xq were ranked in descending order, and the fragments having 
the top 50% of RNA binding strength values on Xq were compared to those having the top 50% RNA binding strength values on 
autosomes using a rank sum test. Both the standard deviation and variance reflect the degree of dispersion of data. To determine 
whether there was a significant difference in the degree of dispersion of RNA binding strengths between Xq and chromosomes 11, 
20, and 22, we performed homogeneity of variance test using SPSS software. 

Results

The comparison of RNA binding strengths of X chromosome (chrX) and autosomes

We first analyzed the RNA binding strengths of human autosomes 1-22 and compared them to those of the X chromosome. For 
this purpose, the chromosomal DNA was computationally divided into 50-kb fragments that were recorded as a set of 7-nucleotide 
(nt) DNA strings. A separate set of 7-nt strings were calculated from the RNAs transcribed from tonsil germinal center B cells. The 
number of DNA 7-nt strings was multiplied by the number of RNA strings. The sum of all such products represents the total strength 
of binding to the 50-kb DNA sequence (see Materials and Methods). This analysis revealed that the mean binding strength of RNAs 
to the chrX is significantly lower than to most autosomes, with only chromosomes 8, 11, 18, 20, 21, and 22 having lower binding 
strengths than chrX (Table 2, Figure 1). 

Chr Number of 50-kb 
fragments 

Mean ± S.D. of RNA binding 
strengths

P values vs. X 
using t-test*

P values vs. Xq 
using t-test**

1 4438 6333574.22± 691245.81 <0.01 <0.01
2 4758 6314539.81± 565702.45 <0.01 <0.01
3 3884 6337212.06± 552823.21 <0.01 <0.01
4 3747 6370787.96± 476562.48 <0.01 <0.01
5 3556 6320322.79 ± 560634.19 <0.01 <0.01
6 3346 6351251.86 ± 512578.84 <0.01 <0.01
7 3102 6422567.89 ± 635270.25 <0.01 <0.01
8 2845 6273460.86 ± 550807.81 <0.01
9 2334 6306166.84 ± 605680.41 <0.05 <0.01
10 2633 6304370.16 ± 672467.68 <0.05 <0.01
11 2620 6189916.53 ± 624444.70
12 2595 6415714.81 ± 666539.13 <0.01 <0.01
13 1915 6373274.15 ± 478290.45 <0.01 <0.01
14 1745 6364194.37 ± 662510.32 <0.01 <0.01
15 1632 6346786.11 ± 665506.10 <0.01 <0.01
16 1602 6367224.26 ± 740683.39 <0.01 <0.01
17 1559 6524509.02 ± 831046.94 <0.01 <0.01
18 1495 6281989.52 ± 518609.70 <0.01
19 1117 6721733.43 ± 807647.61 <0.01 <0.01
20 1192 6193198.50 ± 753727.48
21 682 6279488.50 ± 578744.81 <0.01
22 695 6242274.77 ± 831045.21
X 2994 6267628.33 ± 526047.84
Xp 1142 6345337.19 ± 562236.71 <0.01
Xq 1852 6219616.19 ± 496520.70

*: Mean ± S.D. of RNA binding strengths of autosomes compared to those of the chrX using t-tests. **: Mean ± S.D. of RNA binding 
strengths of autosomes compared to that of Xq using t-tests. Xp: the short arm of chrX. Xq: the long arm of chrX.
Table 2: Comparison of RNA binding strengths of the autosomes and chrX
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Comparison of RNA binding strengths of Xq and autosomes

Because the long arm of the chrX (Xq) is almost entirely inactivated, we further compared the RNA binding strength of Xq to that 
of the autosomes. The RNA binding strength of Xq was significantly lower than that of the autosomes, except chromosomes 11, 20, 
and 22 (Figure 1, Table 2). 

We then examined whether there were significant differences between the fragments with high RNA binding strengths between 
Xq and chromosomes 11, 20, and 22. The fragments with high RNA binding strengths are indicated by two factors: the standard 
deviation (SD) of RNA binding strength and an upper 50% value of RNA binding strengths.

We found that the SD of RNA binding strength in Xq was lower than that for chromosomes 11, 20, and 22 (Table 2). The SD 
reflects the degree of dispersion of data. To observe whether there was a significant difference in the degree of dispersion of RNA 
binding strengths between Xq and chromosomes 11, 20 and 22, we performed homogeneity of variance tests (see Materials and 
Methods). The variance of RNA binding strengths of Xq was significantly lower than that of chromosomes 11, 20 and 22 (p<0.01). 
These results suggest that there is greater uniformity in RNA binding strengths of different 50 kb DNA fragments on Xq than in 
those on chromosomes 11, 20 and 22. Although the mean RNA binding strength value of chromosomes 11, 20, and 22 was not 
significantly higher than that of Xq, the variance of chromosomes 11, 20, and 22 was significantly greater than that of Xq, which 
suggests that some fragments of chromosomes 11, 20, and 22 have higher RNA binding strengths, and some fragments have lower 
RNA binding strengths. We therefore compared the top 50% RNA binding strength values on Xq to those of the autosomes. Because 
the distribution of the top 50% RNA binding strength values does not follow a quasi-Gaussian distribution, we used SPSS software 

Figure 1: Comparison of mean RNA binding strengths of autosomes and chrX: The y-axis displays the mean RNA binding strength 
of each chromosome. The RNA binding strengths of autosomes without # symbol were significantly higher than those of X 
chromosomes. The RNA binding strength of autosome without * symbol were significantly higher than that of Xq
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to do rank sum tests, which are suitable for the two independent samples test of non-normal distribution data. The top 50% RNA 
binding strength values of Xq were significantly lower than those of all autosomes (p<0.01, Table 3, Figure 2) and suggest that Xq 
lacks DNA fragments possessing high RNA binding strengths. These results indicate that lower mean RNA binding strengths and 
lower top 50% RNA binding strengths are two characteristics of Xq. The adjacent sequences with low RNA binding strengths cannot 
lead to complete inactivation of the fragments having very high RNA binding strengths.

Chr Number of fragments 
(each fragment is 50 kb)

Mean ± S.D. of RNA binding 
strengths

P values vs. Xq using 
rank sum test*

1 2219 6852557.91±523160.54 <0.01

2 2379 6731999.18±429290.51 <0.01

3 1942 6736464.99±438393.58 <0.01

4 1874 6703132.77±356352.10 <0.01

5 1778 6727999.61±442933.87 <0.01

6 1673 6726310.07±390574.13 <0.01

7 1551 6882650.85±494280.01 <0.01

8 1423 6665717.93±396150.80 <0.01

9 1167 6751692.66±448601.14 <0.01

10 1317 6811085.63±482917.99 <0.01

11 1310 6661089.76±453199.60 <0.01

12 1298 6903220.43±533706.22 <0.01

13 958 6718085.01±333040.20 <0.01

14 873 6851483.23±514543.32 <0.01

15 816 6849173.39±526660.95 <0.01

16 801 6925111.51±538637.01 <0.01

17 780 7374808.36±569105.61 <0.01

18 748 6667064.16±375926.80 <0.01

19 559 7389657.41±459417.20 <0.01

20 596 6791394.78±610571.35 <0.01

21 341 6714836.54±346958.46 <0.01

22 348 6889563.32±612669.24 <0.01

Xp 571 6745827.53±499507.51 <0.01

Xq 926 6578083.40±399766.62

Chr: chromosome. *: RNA binding strengths of different 50-kb fragments on the autosomes, Xp and Xq were placed in 
descending order, and the fragments with the upper 50% values of RNA binding strengths on Xq were compared with those 
of the autosomes and Xp using rank sum tests. Xp: the short arm of the chrX. Xq: the long arm of the chrX.

Table 3: Upper 50% RNA binding strength values of the autosomes, Xp, and Xq
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Based on our analyses, chromosome 19 (chr19) has the highest mean RNA binding strength, and chr11 has the lowest mean RNA 
binding strength. So we used Figure 3A and Figure 3B to show the RNA binding strengths of the two chromosomes. Both the mean 
of RNA binding strength of chr19 (6721733.43 ± 807647.61 vs. 6219616.19 ± 496520.70, Table 2) and the upper 50% RNA binding 
strength values of chr19 (7389657.41 ± 459417.20 vs. 6578083.40 ± 399766.62, Table 3) were significantly higher than those of Xq 
(Figure 3A). Although the mean RNA binding strength value of chr11 was lower than that of Xq, its top 50% RNA binding strength 
values (6661089.76±453199.60 vs. 6578083.40±399766.62, Table 3) are significantly higher than those of Xq (Figure 3B).

The RNA binding strength of Xq was significantly lower than that of Xp

Approximately 30% of the genes located on the Xp escape XCI, whereas Xq is almost entirely inactivated. Carrel et al [27] reported 
that 29 of 224 X-linked genes escape XCI. Two of these genes escaping XCI are located on Xq (Figure 3C); the other 27 genes 
are located on Xp (Figure 3D). Our evaluation using bioinformatic methods revealed that the RNA binding strength of Xq was 
significantly lower than that of Xp (p<0.01) (Table 2). The upper 50% RNA binding strength values of Xq were significantly lower 
than those of Xp (p<0.01, Table 3). 

From Figure 3C, we can see that the RNA binding strength of Xq at different genome positions was relatively uniform and Xq possess 
fewer fragments with high RNA binding strengths. These analyses proved that only Xq simultaneously has the both characteristics of 
low RNA binding strengths and low SD (Table 2). The RNA binding strength of Xp varied greatly at different genome positions, and 
Xp possess more fragments with high RNA binding strengths (Figure 3D). 

RNA binding strengths of inactivation regions (IRs) are significantly lower than those of the escaping regions from XCI (ERs)

Figure 2: Comparison of top 50% RNA binding strengths of Xq with autosomes and Xp: A * symbol indicates that the top 50% RNA 
binding strengths of Xq is significantly lower than that of autosomes and Xp
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Figure 3: RNA binding strengths of chr19, chr11, Xq, and Xp: (A) RNA binding strengths of chr19. Chr19 is the chromosome with 
the highest mean RNA binding strength value and has many fragments with relatively high RNA binding strength. (B) RNA binding 
strengths of chr11. Chr11 is the chromosome with the lowest mean RNA binding strength value and has some fragments with relatively 
high RNA binding strength. (C) RNA binding strengths of Xq. Each * symbol represents a gene that escapes from XCI on Xq: RPS4X and 
WI-12. (D) RNA binding strengths of Xp. Each * symbol represents a gene that escapes from XCI on Xp: SLC25A6(ANT3), DXYS155E, 
ALTE(TRAMP), stSG15779, MIC2, StSG9723, StSG1369, ARSD, GS1(Hs.78991), Hs.79876, GS2, SEDT, CXORF5, INE2, PIR, GRPR, 
StSG4551, RbAp46, eIF-2 gamma, CRSP150, DFFRX, DDX3, INE1, UTX, UBE1, PCTK1, SMCX. Region 1-144 contains 50-kb fragments 
numbered 1-144 on Xp; regions 145-257, 258-321, 322-786, 787-918 and 919-1141 are named for the number of 50kb fragments they 
contain. ER: escaping region (from XCI); IR: inactivation region. For the sake of brevity, we classify region 322-786 as an IR, in fact the 
position shown with * is the ER region. The x-axis represents the genome position (Mb). The genomic position of Xq is calculated from 
the origin of Xq. The genome positions of other chromosomes are the chromosomal sequence map positions

Because approximately 30% of the genes located on Xp escape XCI, we compared the RNA binding strengths of IRs on Xp with those 
of ERs. The RNA binding strengths of the IRs were significantly lower than those of the ERs (Table 4). Xq has one region where the 
genes escape from XCI (Figure 3C). In contrast, Xp has three ERs, and the ER region possess the characteristic of higher RNA binding 
strengths and the RNA binding strength of IR region is lower (Figure 3D). 

Genome position Total fragment 
number

RNA binding strengths (Means ± 
SD) Mb The number of 50 kb 

fragment

IRs 7.20-12.85* 145-257** 801*** 6282853.28± 537207.57 ****, #

16.05-39.30 322-786

45.90-57.20 919-1144

ERs 1-7.20 1-144 332  6497461.20±598838.59

12.85-16.05 258-321

39.30-45.90 787-918

RNA binding strengths of centromeres is significantly lower than that of their flanking sequences

The bioinformatics analyses above suggested that XCI is associated with low RNA binding strength of chrX. To further investigate this 
hypothesis, we analyzed the RNA binding strength of the centromere regions and their flanking sequences, because the centromere 
regions are structural heterochromatin that is almost non-transcribed. The lengths of the centromere sequences with low RNA 
binding strengths were 2.69 Mb in chr19 and 3.81 Mb in chrX (Table 5). Figure 4 and Table 5 show that the RNA binding strengths of 
the chr19 and chrX centromere sequences were significantly lower than those of their flanking sequences. These results suggest that 
non-transcribed sequences (structural heterochromatin) have lower RNA binding strengths than do transcribed sequences. These 
low RNA-binding strength regions do not allow their flanking sequences to become structurally heterochromatin (that is, they can 
still be transcribed under certain conditions), which is consistent with the fact that regions with low RNA-binding strengths on Xp 
did not lead to the complete inactivation of genes from their flanking regions with high RNA binding strengths. 

IRs: inactivation regions; ERs: escaping regions (from XCI). *7.20-12.85 indicates that this IR is from genome position 
7.20 Mb to 12.85 Mb. ** 145-257 indicates that this IR is from the 145th 50 kb DNA fragment to the 257th 50kb DNA 
fragment. ***801 indicates that the three IR regions (7.20-12.85, 16.05-39.30 and 45.90-57.20) include 801 50 kb DNA 
fragments. **** 6282853.28 ± 537207.57 indicates the mean value and SD of RNA binding strengths of the three IRs. A 
# symbol indicates that the mean RNA binding strength of the three IRs is significantly lower than that of the three ERs 
(p<0.01)
Table 4: RNA binding strengths of IRs and ERs on Xp
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Chr Cen
tro
mere
len
gth 
(Mb)

Centromere sequences 
Mean ± S.D.

Upstream sequences 
Mean ± S.D.

Downstream 
sequences Mean ± 
S.D.

T values 
vs. up
stream* 

p values 
vs. up
stream**

T values 
vs. down
stream#

p values 
vs. down
stream##

19 2.69 5276187.71±191896.57 6795727.93±720967.15 5973147.56±526793.11 17.828 P<0.001 10.708 P<0.001
X 3.81 4767978.51±65818.50 5970283.78±448036.54 6087100.85±374574.22 23.741 P<0.001 31.011 P<0.001

Chr: chromosome. * t tests comparing the mean RNA binding strength values of centromere sequences to those of the upstream sequences.

**p values for mean RNA binding strength values of centromere sequences compared to those of the upstream sequences.

# t tests comparing the mean RNA binding strength values of centromere sequences to those of the downstream sequences.

## p values for mean RNA binding strength values of centromere sequences compared to those of the downstream sequences.

Table 5: Mean RNA binding strengths of the chr19 and chrX centromeres and flanking sequences

Figure 4: The RNA binding strengths of centromere regions are significantly lower than those of the corresponding flanking sequences: (A) 
RNA binding strengths of the ChrX centromere region and flanking sequences. (B) RNA binding strengths of the Chr19 centromere region 
and flanking sequences. The centromere regions and 4 Mb of upstream and downstream sequence were divided into 50-kb fragments. 
RNA binding strength was calculated for each fragment as described in the Materials and methods section. Each point represents the RNA 
binding strength of a 50-kb DNA sequence (i.e., the total number of RNAs that bind to that 50-kb DNA sequence). The y-axis represents 
the levels of RNA binding strengths. The x-axis represents genome position that is the chromosomal sequence map positions
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Discussion 

Previous studies have demonstrated that binding of RNAs to DNA may play a crucial role in activating gene expression, in a 
process known as RNA activation. In human cells, small regulatory RNAs can target promoters to activate gene expression [28,29]. 
Increasing evidence suggests that non-coding RNA (ncRNA) transcripts play a fundamental role in activating ncRNA-targeted locus 
via targeting epigenetic modifications [30]. Our previous studies have shown that RNAs specifically activate gene expression in a 
length-, position-, and sequence-dependent manner, binding of RNA with DNA affected chromatin packaging and activated genes 
[22,31]. However, the roles of RNA activation in XCI has not been investigated.

We introduced a computational metric for RNA binding strength to evaluate the binding ability of RNA to DNA. Our previous 
studies found that the RNA binding strength of centromere DNA, which consists of constitutive heterochromatin, from C group 
chromosomes was significantly lower than that of flanking sequences, which suggests that low RNA binding strengths were related to 
centromere lacking transcription [22]. Here, to explore whether low RNA binding strength may be one reason for XCI, we analyzed 
the simulated RNA binding strengths to DNA segments for autosomes and the X chromosome. We found that the RNA binding 
strength of the chrX was significantly lower than that of most autosomes (except chromosomes 8, 11, 18, 20, 21, and 22) (Table 2, 
Figure 1). Although the mean of RNA binding strengths of chromosomes 8, 11, 18, 20, 21, and 22 are not higher than that of chrX, 
they contain some regions with high RNA binding strength, which is reason that maintain them activation (Table 3).

Because Xq is almost completely inactivated, we then compared the RNA binding strength of Xq with that of the autosomes, which 
revealed that the RNA binding strength of Xq was significantly lower than that of autosomes (except chromosomes 11, 20, and 22) 
(Table 2). Although the RNA binding strength of chromosomes 11, 20, and 22 is less than or close to that of Xq, the standard deviation 
of RNA binding strengths in these three chromosomes were significantly higher than that of Xq, suggesting that chromosomes 11, 
20 and 22 have some fragments with low RNA binding and other fragments with high RNA binding strengths. After analyzing the 
fragments possessing upper 50% of RNA binding strength values of Xq and the autosomes, we found that the mean upper 50% 
value of RNA binding strengths of Xq were significantly lower than those in chromosomes 11, 20 and 22 (Table 3). This is consistent 
with the results that the standard deviations of RNA binding strengths of chromosome 11, 20, and 22 were larger than that of Xq. 
In addition, the mean upper 50% value of RNA binding strengths of Xq was significantly lower than other autosomes. We therefore 
speculated that mean upper 50% value of RNA binding strengths of a autosome being higher than that of Xq was a condition of 
leading to its activation. 

Approximately 30% of the genes located on Xp escape XCI, while the genes located on Xq are almost entirely inactivated. Using our 
bioinformatic approach, we found that the RNA binding strength of Xq was significantly lower than that of Xp (p<0.01) (Table 2) and 
that the RNA binding strength of the IRs on Xp was significantly lower than that of the activated regions (p<0.01) (Table 4). These 
findings provide new clues for uncovering the mechanism by which genes escape from a XCI.

Based on these results, we propose that XCI involves the entire sequence structure of the X chromosome (i.e., the base composition) 
rather than individual segments and factors. We further suggest that the low RNA binding strength of the human chrX may be one 
reason for XCI. Because Xq lacks the fragments with high RNA binding strengths, the Xq may be affected first when activators 
(for example: transcription factor, activating RNA) reduce and inhibitors (for example: RNA interference, DNA modification) 
increase.

The X chromosome and chr19 have distinctive features. Long interspersed nuclear element-1 (LINE-1) comprise 17% of the 
human genome[32], but accounts for 30% of chrX [33]; Alu elements belonging to the short interspersed nuclear elements of 
repetitive elements are present in more than one million copies which altogether represent 10% of the whole human genome 
[34], but accounts for 29% of chr19 [35]. In this paper, we compared the RNA binding strength of the centromeres and flanking 
sequences of chrX and chr19. The RNA binding strengths of the centromere regions were significantly lower than those of their 
flanking sequences on both chromosomes (Figure 4, Table 5). Human centromeric DNA is mainly composed of α-satellite DNA, 
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β-satellite DNA and γ-satellite DNA [36,37]. These satellite DNA are also scattered and transcribed in small amounts in other 
parts of the genome [38,39]. The low RNA binding strength of the centromeres was detected in this paper, illustrating that the 
small amount transcription of these satellite DNA in other parts of the genome does not affect the RNA binding strength of the 
centromeres. 

Prior studies have indicated that autosomes translocated to the chrX could not be completely inactivated [40,41], suggesting that 
the sequence characteristics is important factor for determining whether inactivation. The transcription activity is reduced when 
autosomes translocats to the chrX but not completely inactivated, suggesting that XCI has cis action.The results of IR and ER 
showed that the regions with low RNA binding strength could not completely silence the activity of regions with the high RNA 
binding strengths, which was consistent with the results of autosomal translocation to chrX. Xq lacks fragments with high RNA 
binding strengths (the mean of upper 50% RNA binding strength is the lowest, and the variance of RNA binding strength of Xq 
is the lowest).The sequence composition of Xq is more susceptible to cis action (inactivation of one region in Xq can inactivate its 
adjacent regions, and vice versa), which results in inactivation or actvation cascade reactions.We proposed that the nature of cis 
reactions includes RNA activation (e.g., LINE-1 activation) and heterochromatin formation. These results, in combination with 
the analysis results of centromeres and their flanking sequences suggested that regions with low RNA binding strengths cannot 
completely lead to the inactivation of their flanking sequences with high RNA binding strength, and vice versa.

The activation of the X chromosome is dependent upon X-linked RNAs and upon RNAs produced from autosomes [42,43]. Both 
X chromosomes are active during the embryonic period, and one chrX is randomly inactivated during cell differentiation, which 
illustrates that XCI is associated with the genome environment of the chrX [44,45]. The observation that female diploid cells 
support the activation of one chrX, and female tetraploid cells support the activation of two X chromosomes also provides evidence 
for a relationship between XCI and the genome environment of the chrX [46-48]. After the early embryonic stage, activating 
factors (RNAs, transcription factors, etc.) decrease, and inhibitors (chromatin packaging, DNA modification, etc) increase, so that 
the cells can only support the activation of one chrX. This transition may also explain why diploid cells support the activation of 
one chrX and why tetraploid cells support the activation of two X chromosomes. Because the two X chromosomes in a diploid 
cell compete for activating factors and there are transcriptional activation effects (i.e., transcribed genes can activate themselves) 
[49,50], once activating factors trigger the activation of one chrX, the other chrX will be inactivated.

Previous studies have reported several key mechanisms of XCI, such as XIST coating of the chrX, the recruitment of DNA-, 
RNA-, and histone modification enzymes, and compaction and compartmentalization of the inactive X [51-55]. Xist represents a 
paradigm for the function of long non-coding RNA in epigenetic regulation. ChrX deletion studies and X; autosome translocation 
studies demonstrated that Xist sequences are not completely related to XCI and its maintenance, indicating that the XCI induced 
by Xist requires the specific sequence structure of chrX [56-58]. We proposed that once the inactivation center of chrX is triggered, 
the inactivation cascade requires the special structure characteristic of chrX, i.e. low and uniform RNA binding strength. The 
specific sequence structure characteristic of chrX is the important reason of inducing the cascade of inactivation or activation, 
which means that inactivation of one region leads to inactivation of surrounding sequences, or activation of one region leads to 
activation of surrounding sequences in chrX.

Conclusion

The top 50% RNA binding strength values of Xq were significantly lower than those of all autosomes and Xp. The RNA binding 
strength of the inactivation regions on Xp was significantly lower than that of the escaping regions from XCI, and the RNA 
binding strengths of the centromere region (structural heterochromatin, non-transcribed regions) were significantly lower than 
those of their flanking sequences. Taken together, these bioinformatic analyses suggest that the low RNA binding strength and the 
lack of fragments with high RNA binding strengths may be one of reasons for XCI.
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